17,674 research outputs found

    Aerodynamic Effect of Strakes on Two-Dimensional Tail Boom Models of the OH-58A and the OH-58D Helicopters

    Get PDF
    During hover and low speed flight, helicopters experience significant aerodynamic forces on the tail boom caused by the wake from the main and tail rotors and by crosswinds. These effects were simulated during a study conducted in the Langley 14 by 22 Foot Subsonic Tunnel on a 136 percent scaled 2-D tail boom model with cross sections representative of those on the U.S. Army OH-58A and the OH-58D helicopters. The effects of longitudinal strakes attached to the cross sections were studied. To obtain the aerodynamic forces acting on the cross sections, the flow incidence range on the scaled models was varied from -45 to 90 degrees and the models were tested through a dynamic pressure range of 5 to 15 psf. The results of the OH-58A and the OH-58D configurations show a significant improvement at conditions which represent right sideward flight by reducing the adverse aerodynamic side force when the strakes are installed. These data were used to calculate a change in tail rotor power for the full scale flight vehicle and indicated approx. a 5 to 6 percent average savings in right sideward flight for the critical velocity range of 0 to 30 knots. Increases in the tail boom normal force were noted due to the strakes. The results indicate a potential for reducing the directional control and tail rotor thrust required in the critical hover and right sideward flight speed range with a calculated minimum increase to main rotor power required and an overall net improvement in power of 0.5 percent for both the OH-58A and OH-58D

    Helicopter low-speed yaw control

    Get PDF
    A system for improving yaw control at low speeds consists of one strake placed on the upper portion of the fuselage facing the retreating rotor blade and another strake placed on the lower portion of the fuselage facing the advancing rotor blade. These strakes spoil the airflow on the helicopter tail boom during hover, low speed flight, and right or left sidewards flight so that less side thrust is required from the tail rotor

    Testing the binary hypothesis: pulsar timing constraints on supermassive black hole binary candidates

    Get PDF
    The advent of time domain astronomy is revolutionizing our understanding of the Universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of ≈\approx250k quasars in CRTS resulted in a catalogue of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of ≈\approx35k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about 2.3σ2.3\sigma and 3.6σ3.6\sigma for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.Comment: 14 pages, 11 figures, 3 tables. Resubmitted to the Astrophysical Journal after some major revision of the results including a proper estimate of the intrinsic mass of the binary candidate

    Helicopter Anti-Torque System Using Strakes

    Get PDF
    A helicopter is disclosed with a system for controlling main-rotor torque which reduces the power and size requirements of conventional anti-torque means. The torque countering forces are generated by disrupting the main rotor downwash flowing around the fuselage. The downwash flow is separated from the fuselage surface by a strake positioned at a specified location on the fuselage. This location is determined by the particular helicopter wash pattern and fuselage configuration, generally being located between 20 deg before top dead center (TDC) and 80 deg from TDC on the fuselage side to which the main rotor blade approaches during rotation. The strake extends along the fuselage from the cabin section to the aft end and can be continuous or separated for aerodynamic surfaces such as a horizontal stabilizer

    Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    Get PDF
    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model

    Summary of a flight-test evaluation of the CL-84 tilt-wing V/STOL aircraft

    Get PDF
    Flight test evaluation of second generation CL-84 tilt-wing aircraft in hover, transition, and cruise mode

    Communications systems technology assessment study. Volume 2: Results

    Get PDF
    The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed
    • …
    corecore